POWERING A NEW WAVE OF IMMUNE THERAPEUTICS

Corporate Presentation

This presentation contains forward looking statements that do not guarantee future performance.

FORWARD LOOKING STATEMENTS

This presentation contains forward-looking statements about **Sonnet BioTherapeutics** based on management's current expectations which are subject to known and unknown uncertainties and risks. Words such as "anticipated," "initiate," "expect," "intend," "plan," "believe," "seek," "estimate," "may," and variations of these words or similar expressions are intended to identify forward-looking statements. Our actual results could differ materially from those discussed due to a number of factors, including, but not limited to, our ability to raise additional equity and debt financing on favorable terms, the success of our R&D programs, our ability to obtain regulatory approval of our clinical assets and other risk factors.

We are providing this information as of the date of this presentation and do not undertake any obligation to update any forward-looking statements contained in this presentation as a result of new information, future events or otherwise. Unless the context requires otherwise, references to "Sonnet," "Company," "we," "us" and "our" refer to **Sonnet BioTherapeutics**.

Powering a New Wave of Immune Therapeutics

LEADERSHIP

Highly experienced executive team with a deep knowledge of biopharmaceutical drug discovery and development

THERAPEUTIC FOCUS

Corporate strategy comprises an internal therapeutic pipeline of oncology candidates with external business development initiatives underway across oncology, autoimmune and inflammatory diseases

Platform expansion capability into vaccines, antibody drug conjugation and CAR-T

FORTHCOMING MILESTONES

SON-1010: Initiate Phase 1 NHV study, 3Q22

SON-1010: Initial Phase 1 safety data in solid tumors & NHV, 2H22

SON-080: Initiate Phase 1b/2a trial in CIPN, 3Q22

SON-080: Phase 1b/2a initial safety data in CIPN, 2H22

SON-1210: Completion of NHP GLP tox study, 2H22

PLATFORM TECHNOLOGY

Proprietary, patented **Fully Human Albumin Binding** (**F_HAB**[®]) platform provides considerable payload flexibility with asset generation capabilities across major biologic drug classes

- Targeted delivery with increased *in vivo* efficacy
- Single or bispecific mechanism of action
- Extended pharmacokinetics (pK)

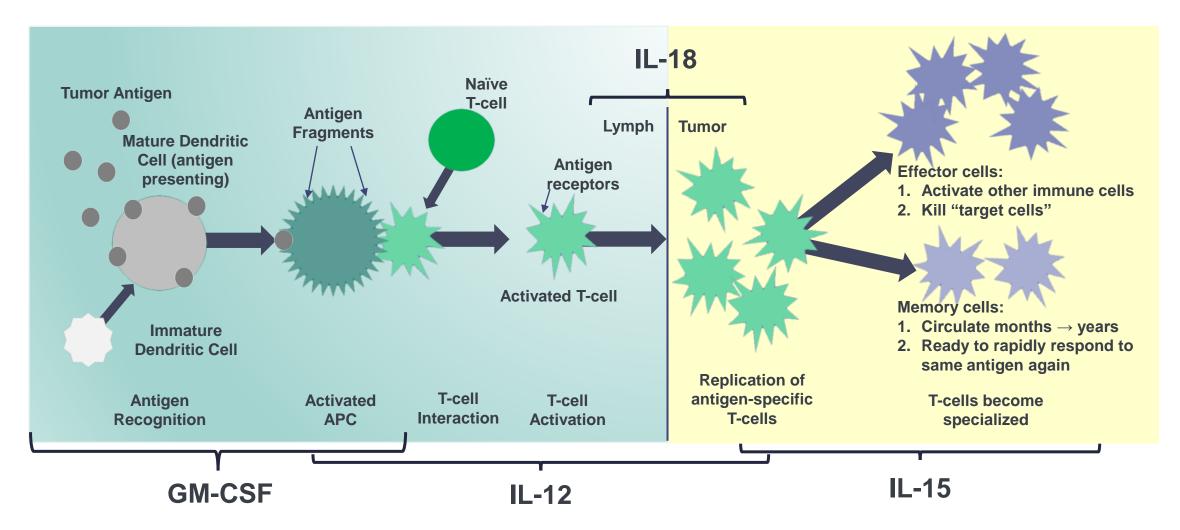
Sonnet's F_HAB technology utilizes a single-chain antibody fragment (scFv) capable of delivering one or two active drug compounds

• Therapeutic payloads attached via flexible linker peptides

Following administration, Sonnet's F_HAB derived candidates bind to and "hitch-hike" on endogenous Human Serum Albumin (HSA) for transport to lymphoid tissues

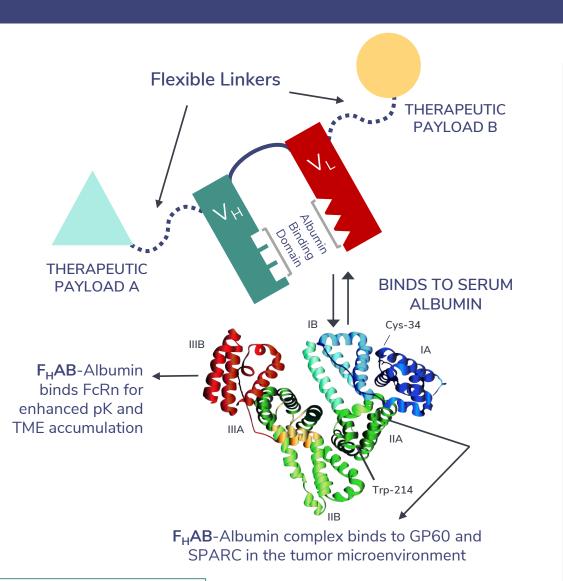
• F_HAB has been designed to bind, unbind and rebind to albumin in an on-and-off fashion through a physical bonding mechanism, obviating the need for chemical conjugation

Pipeline Overview



	PROGRAM	INDICATIONS	DISCOVERY	PRECLINICAL	PHASE I	PHASE II	PHASE III	PARTNER
	SON-1010 (IL12-F _H AB)	Non-Small Cell Lung Cancer, Head and Neck Cancer						
Platform	SON-1210 (IL12-F _H AB-IL15)	Solid Tumors						
F _H AB P	SON-1410 (IL18-F _H AB-IL12)	Melanoma, Renal Cancers						
	SON-3015 (Anti-IL6-F _H AB-Anti-TGFβ)	Tumor and Bone Metastases						
	SON-080 (Low-dose IL-6)	Chemotherapy Induced Peripheral Neuropathy						
		Diabetic Peripheral Neuropathy						New Life

Sonnet Pipeline Targets

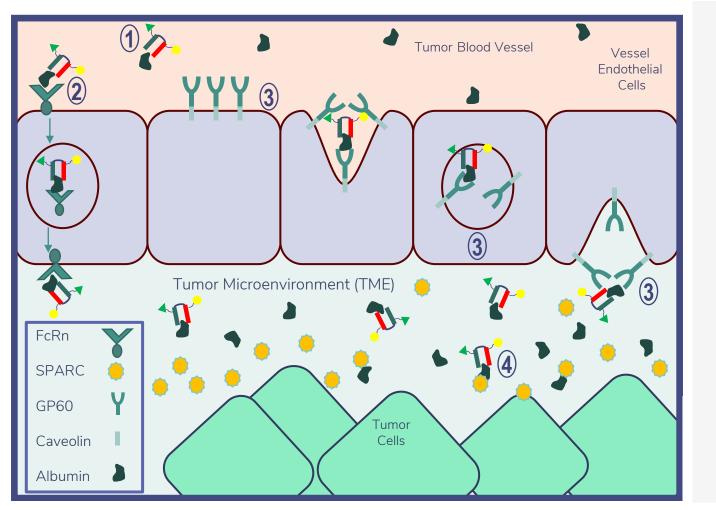

Multiple Points of Intervention

F_HAB PLATFORM TECHNOLOGY

Sonnet's Technology Advantage

For a video displaying the F_HAB mechanism, please click **here**

Asset Profile: SON-1010 (IL12-F_HAB) Stage: Phase 1 study initiated Indications: Solid Tumors


Product Description: Asset delivery and targeting by albumin binding mechanism via the F_HAB domain, which results in accumulation of SON-1010 in the microenvironment of solid tumors (TME) through binding to FcRn, GP60, and SPARC, thereby enhancing penetration and retention with increased efficacy. SON-1010 has demonstrated improved pK via binding to FcRn, similar to full MAbs, and improved tumor delivery, all available in a single patented construct.

Platform Attributes:

- Fully human construct Low/No Immunogenicity
- Mammalian cell production (CHO) Glycosylated
- Small size with linear flexibility Optimized tumor penetration
- Enhanced PK FcRN binding
- Targeted GP60 and SPARC
- Asset Optionality: Single or Bispecific payload capacity
- Modular Rapid asset development

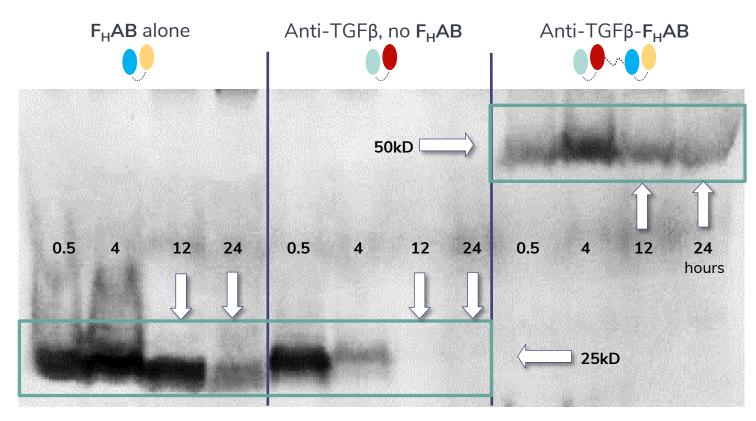
F_HAB: Accumulation in the Tumor Microenvironment

Albumin is elevated in solid tumors

FcRn over expressed in tumors

GP60 is over-expressed on tumor vessel endothelial lining

Over-expression of **SPARC** has been shown in many solid tumors


Tumor architectural changes cause **EPR** that helps maintain the TME

- IL-F_HAB binds Albumin in the blood
- 2. IL-F_HAB Albumin binds to FcRn resulting in transport from blood to TME
- 3. IL-F_HAB Albumin binds to GP60, resulting in transport from blood to TME
- 4. IL-F_HAB Albumin binds to SPARC

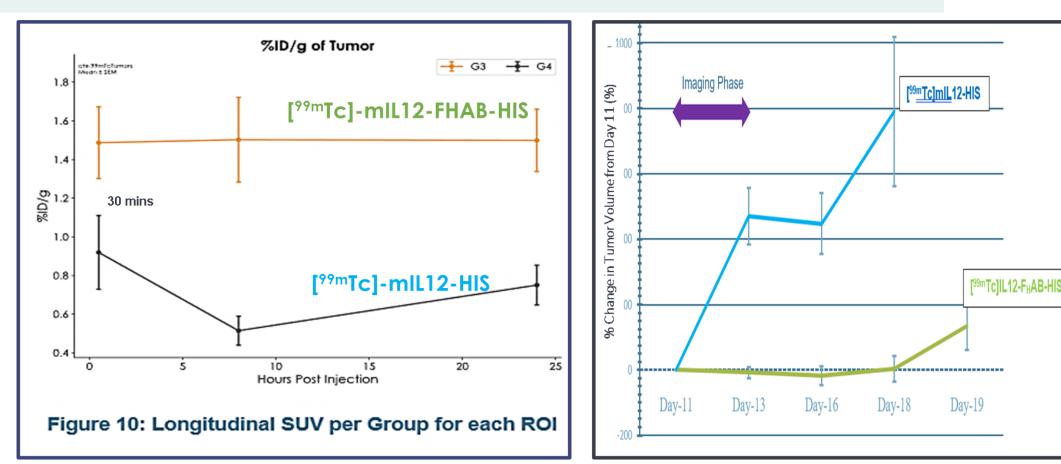
This mechanism of action results in SPARC retaining IL- $\rm F_{H}AB$ in TME

F_HAB: Superior Uptake and Retention in Tumor Tissue

An *in vivo* demonstration of SPARC-mediated binding with optimized retention using albumin

Results show F_HAB enhanced EPR = Efficacy

Western blot of Mouse 4T1 (TGF β positive tumor@150mm³) extracts from mice 0.5-24 hours post IV injection with 100 µg/mouse of **F_HAB**, anti-TGF β or anti-TGF β -**F_HAB**


F_HAB present at 0.5 hours, peaks at 4 hours and detectable through 24 hours

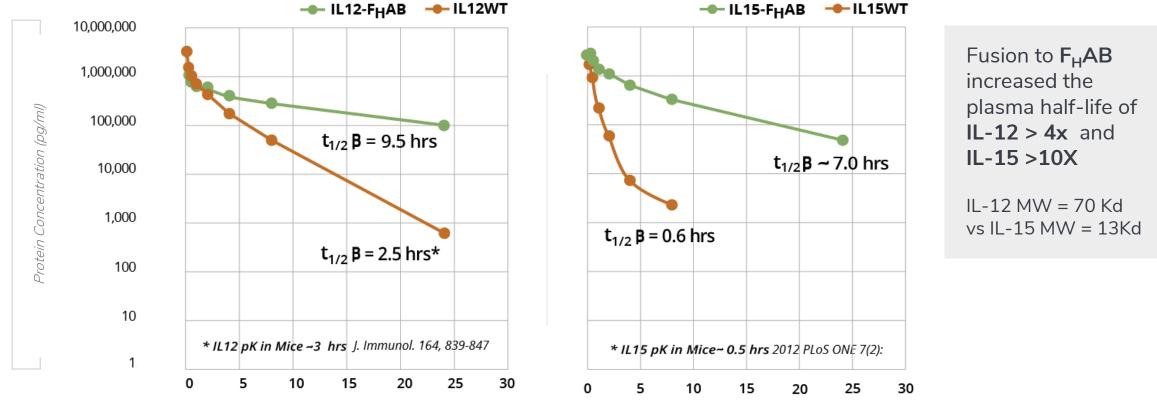
Anti-TGF β present at 0.5 hours, declines at 4 hours and undetectable at 12 and 24 hours

Anti-TGF β -**F_HAB** present at 0.5 hours and detectable through 24 hours

Tumor Accumulation Comparison

Labeled mIL12-F_HAB vs mIL12

In B16F10 tumor-bearing mice, the mIL12- F_HAB -HIS molecule accumulated ~2-3x fold higher than the mIL12-HIS (without F_HAB domain). The HIS Tag was labeled with [99mTc].


Efficacy Readout: The [99mTc]-mIL12- F_HAB -HIS was more effective in inhibiting tumor growth than [99mTc]mIL12-HIS (minus F_HAB) over a 7-day period in the B16F10 mouse model.

Sonnet BioTherapeutics | 10

F_HAB: Enhanced Pharmacokinetic Characteristics

Comparing the pharmacokinetic characteristics of naked IL-12 and IL-15 versus the same interleukins linked to Sonnet's F_HAB

Method: 8 mice C57B/TP, age 9.5 weeks, dose IV, sacrificed @ 5, 15, 30 mins, 1, 2, 4, 8, 24 & 48 hrs. Serum tested by ELISA.

AACR Annual Meeting 2017, Poster #588

Time (Hours)

Time (Hours)

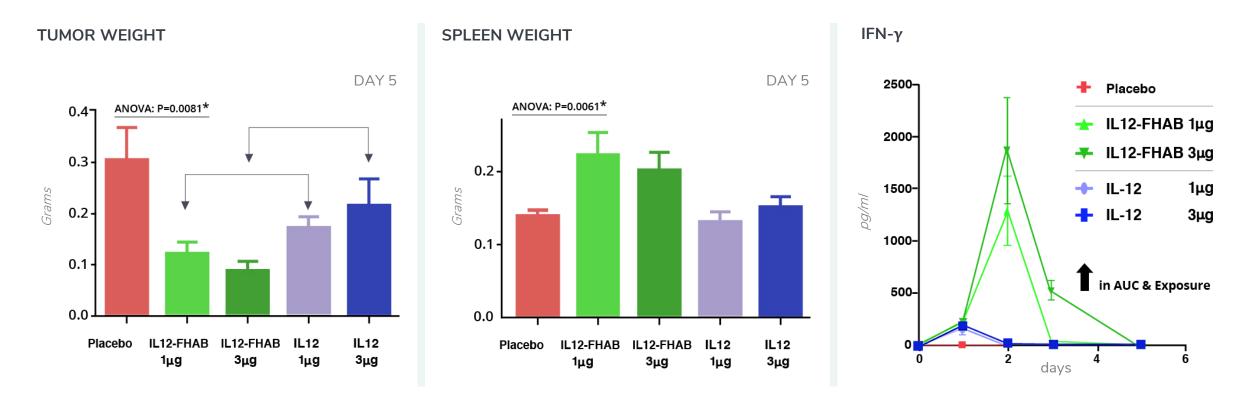
F_HAB: Defining A Better Platform Technology

Sonnet F _H AB Constructs Albumin Binding	VI VI	PEG 1-PEG-IL-2(active)		Fc/lgG	NHS-IL 12	DNA / Viral Gene Therapy Viral Gene Therapy	
ATTRIBUTES	QUALIFIER	ATTRIBUTES	QUALIFIER	ATTRIBUTES	QUALIFIER	ATTRIBUTES	QUALIFIER
Mode	Mono or Bi- Specific	Mode	Mono	Mode	Mono or Bi- Specific	Mode	Mono
pK; Alb binding to FcRn	+++ Dosing 3-4 weeks	pK; Size only	++ Dosing 1-2 weeks	pK; FC Binding to FcRn	+++ Dosing 3-4 weeks	рК	++ Dosing 2-4 weeks
Glycosylated CHO expressed	+	Glycosylated Non mammalian	-	Glycosylated CHO expressed	+	GMP - BSL-2 classified facility	+
Tumor Targeting and Retention	++++ Albumin binds gp60 and SPARC	Tumor Targeting and Retention	-	Tumor Targeting and Retention	++	Tumor Targeting DNA	Intratumoral Injection *
Tumor Penetration, Size and Linear Flexibility	+++ 85-104 kD	Tumor Penetration Globular	+ ~100+ kD	Tumor Penetration Globular	++ 100-300 kD	Tumor Targeting Viral	Viral tumor cell lysis
Controllable Quantity Dosing	+++	Controllable Quantity Dosing	++	Controllable Quantity Dosing	+++	Controllable Quantity Dosing	Issues of variable spread, penetration, resistance and anti- viral immunity

* No ADCC / CDC Activity

Jung, Oncolmm 2018, 7:e1438800 Greiner, Imm Targ & Ther 2021, 10:155–69 Algazi, Clin Canc Res 2020, 26:2827-37 Martinez, JCI, 2019; 129:1407-18

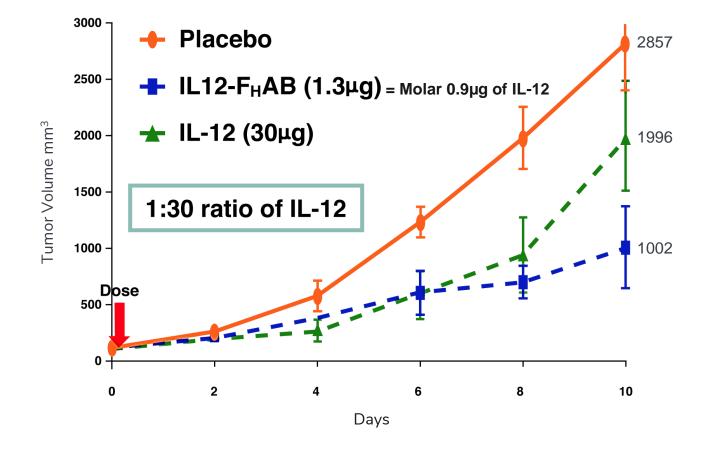
Sonnet BioTherapeutics | 12



F_HAB: PRECLINICAL PROOF-OF-CONCEPT

Sonnet BioTherapeutics | 13

SON-1010: Extended IFN- γ Release With Reduced Tumor and Reciprocal Spleen Weight vs Naked IL-12


Summary

Y In the B16F10 melanoma model, IL12-**F_HAB** is more effective than naked IL-12 in reducing tumor weight at equivalent doses

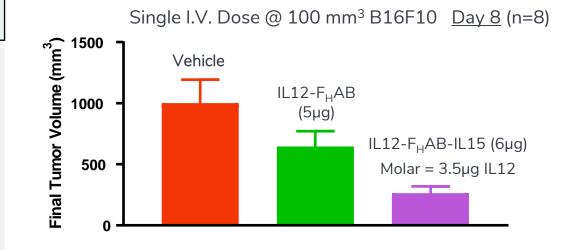
- Reduction in tumor weight correlates with increase in spleen weight
- IFN-γ levels are ~10x greater with longer bioavailability

SON-1010: Reduces Tumor Volume

IL12-**F_HAB** (1.3μg) vs IL-12 (30μg) in B16F10 Melanoma

IL-12 (1 μ g) and IL12- F_HAB (1.3 μ g) are molar equivalent and have similar bioactivity, *in vitro*; however, *in vivo*, F_HAB is approximately 30-fold more potent than IL-12 (at day 10, 1.3 μ g IL12- F_HAB > IL-12 30 μ g)

Bispecific Synergy

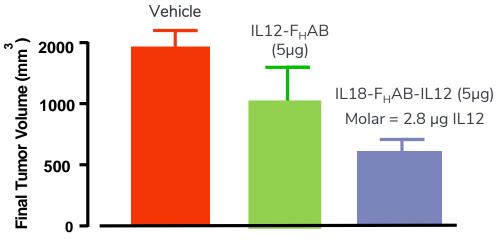


Bispecific IL12-F_HAB-IL15

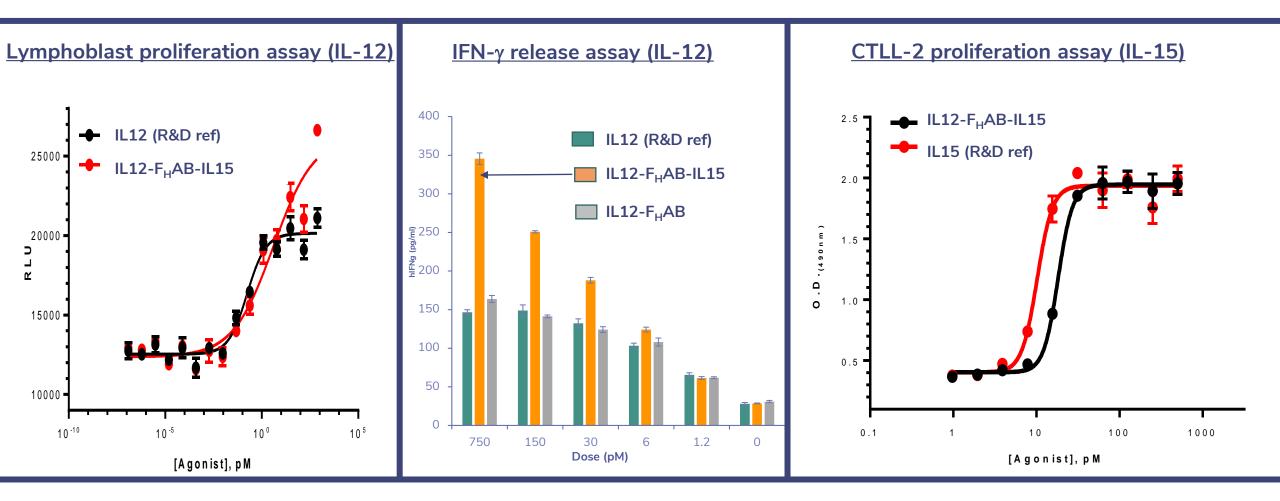
Sonnet's Bispecific Construct – SON-1210

Synergistic Biologic Activity:

- IL-12: ↑ IL-15 alpha receptor, ↑ IFN, ↑ NK/T cells, ↑ TH1 and ↓ T reg
- IL-15: ↑ IL-12 beta 1 receptor, ↑ NK cells, ↓ CD8 memory loss by apoptosis


Bispecific IL18-F_HAB-IL12

Sonnet's Bispecific Construct – SON-1410


Synergistic Biologic Activity:

- IL-18: ↑ IL-12 receptor, ↑ IFNy, ↑ TH1, NK, CD8 cells *infiltrating into tumors FACS data*
- IL-12: ↑ IL-18 receptor, ↑ IFNy,
- IL-12 with IL-18 ↑ CXCL9 & CXCL10 by <u>50-fold</u>

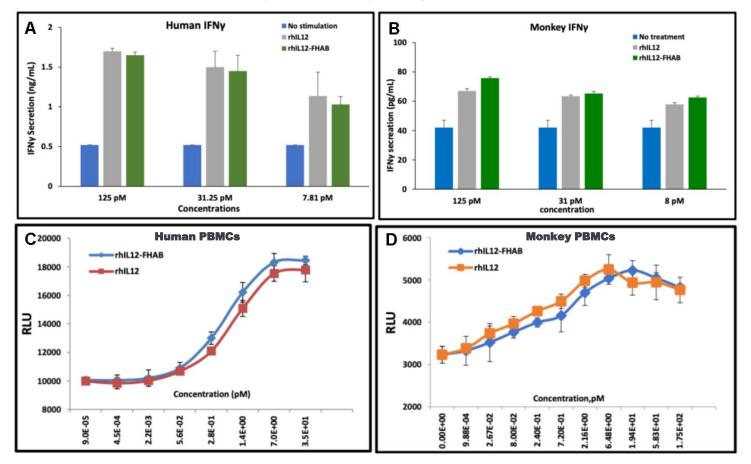
Single I.V. Dose @ 100 mm³ B16F10 <u>Day 10</u> Volume (n=6)

- Cell-based assays showed no loss of biological activity for either IL-12 or IL-15, suggesting no steric hindrance of the bispecific construct
- Synergistic effect of IFN- γ production was observed with the IL-12, IL-15 bispecific F_HAB

Comparison of Efficacy	IL12-F _H AB (1µg) Inhibition 37%		IL12-F _H AB-IL15 (5µg) Inhibition 78%		IL18-F _H AB-IL12 (5µg) Inhibition 65%	
Tumor & Spleen Immune Cell Type Day 5, TV ~400mm ³	Tumor	Spleen	Tumor	Spleen	Tumor	Spleen
Cell Population						
T cells	0.8	1.0	0.5	0.9	1.2	0.9
CD4+ T Cells	0.8	0.6	1.2	0.5	1.2	0.7
Th1 Cells	1.6	1.0	1.7	0.8	3.4	1.8
CD8+ T Cells	1.2	0.8	1.4	0.7	6.5	0.9
Cytotoxic CD8+, IFNy	1.8	1.5	3.6	1.7	1.8	1.5
NK Cells	1.5	1.1	3.3	1.3	2.5	1.3
NK Cells, IFNy	1.7	0.6	6.0	0.7	12.0	2.7
M1 Macrophages	1.4	2.9	1.4	3.0	1.8	3.2
M2 Macrophages	0.2	1.2	0.3	4.0	0.1	3.5
Regulatory (T Reg) Cells	0.9	1.2	0.6	0.8	1.7	1.6

Flow cytometry analysis of interleukin constructs: At Day 5 post single dose, an increase in immune-stimulating cells was observed within tumors, corresponding to a decrease in tumor volume. Also, there was a transition of M2 to M1 in the tumor. IL18- F_HAB -IL12 showed the strongest infiltration of immune cells into the tumor, likely due to the biology of IL-18.

IL18-F_HAB-IL12 showed statistically significant tumor size reduction versus placebo in a mouse melanoma study, as well as a dose response.


Test Article	Day 0, Single Dose Tumor @ 100 mm³	Day 8 Tumor Volume (mm ³ ± SEM), N=8	Day 8 Percentage Tumor Shrinkage
Placebo	NA	1747 ± 301	-
IL18-F _H AB-IL12	1 µg	918 ± 130	47%
IL18-F _H AB-IL12	5 µg	619 ± 141	65%

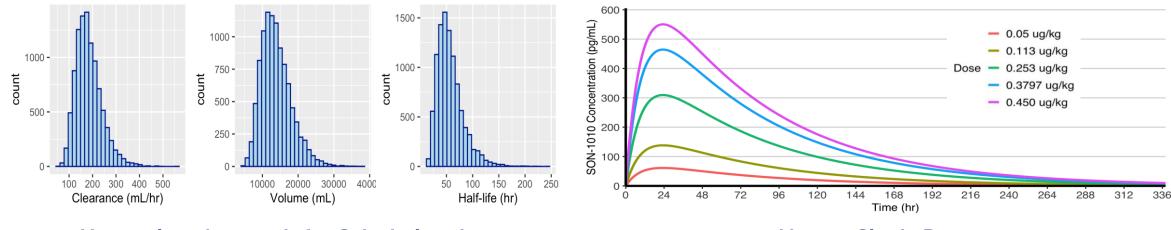
- Synergy between these interleukins, as IL-18 upregulates the IL-12 receptor and IL-12 upregulates the IL-18 receptor
- IL-18 also increase chemokines CXCL9 and CXCL10 for immune cell migration into the tumor
- FACS analysis showed SON-1410 has the potential to make a cold tumor immunologically hot
- Data indicated significantly greater reduction in tumor volume, higher IFN-γ levels and immune cell responses (NK, NKT, Th1, and cytotoxic CD8 T cells), and enhanced infiltration into tumor

Comparable Effects of SON-1010 and rhlL12 IFNγ Release and Proliferation of Human or Monkey PBMCs

Studies of hamster, rat, dog, macaque, and human cells were done to establish a relevant animal tox model. SPR and biopotency results showed that only cynomolgus macaque was an appropriate animal model for safety and PK/PD studies of SON-1010 (IL12-FHAB), compared to rhIL12.

PBMCs were pre-activated with PHA (A-D) and rhIL2 (C&D), then incubated with various doses of IL12-F_HAB or rhIL12

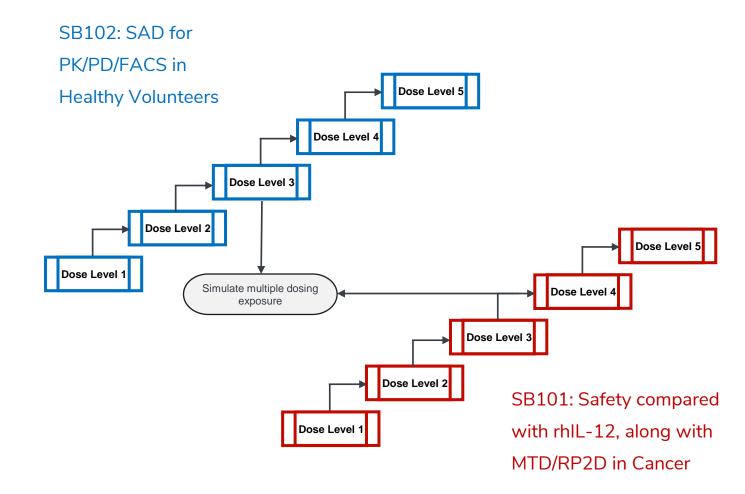
- (A&B) Production of IFNγ in culture supernatants measured by ELISA
- (C&D) Cell proliferation measured by a luminescent assay


SON-1010: Modeling of Human Pharmacokinetics

Allometric scaling was used with an uncertainty analysis to estimate human predicted values for clearance (CL) and the central volume of distribution (Vd) using single species scaling.

NHP Mean t _½ (hr)	NHP Clearance (mL/hr)	NHP Volume (mL)	Clearance Human Pred. (mL/hr)	Volume Human Pred. (mL)	Human Pred. t _½ (hr)	Mean t _½ (hr)	Geometric Mean t _½ (hr)	Median t _½ (hr)	$5^{ ext{th}}$ Percentile $t_{ extsf{t}_2}$ (hr)	95 th Percentile t _½ (hr)
40.0	11.4	523.7	184.1	13,867	52.2	56.9	52.2	52.3	26.2	105.0

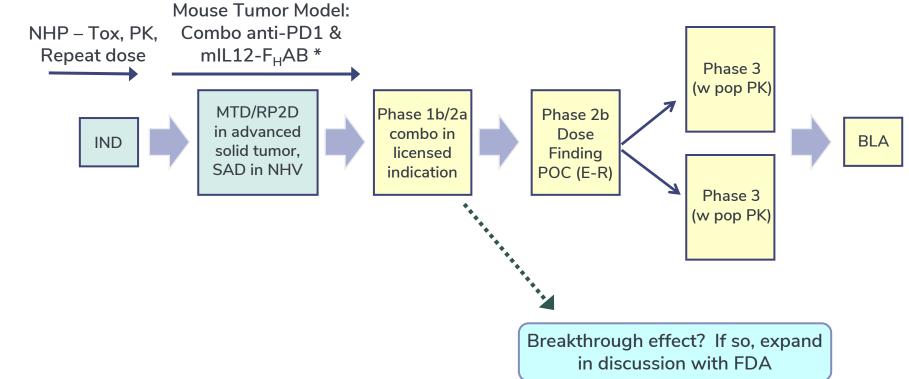
An exponent for CL of 0.85 for large protein molecules and an exponent of 1 for the Vd were selected, based on the molecular size of SON-1010.


Uncertainty Approach for Calculating the Half-Life in Humans

Human Single Dose Simulations

Wang, Biopharm Drug Dispos (2010) 21:253 Tan, Drug Metab Dispos (2007) 35:1886

Clinical Program: SB101/SB102 Study Designs

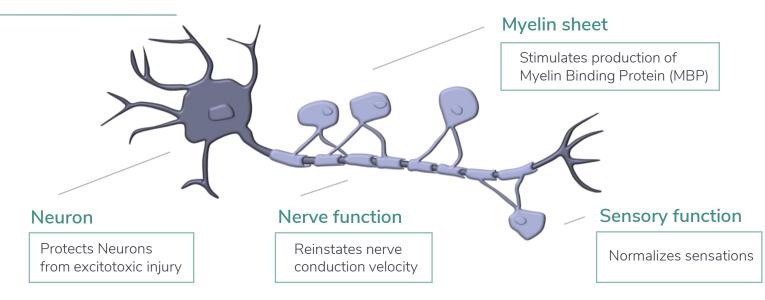


- Rapid enrollment of healthy volunteers in the SAD provides clean PK data without interpretation challenges from prior cancer treatment effects
- Simulation using <u>continual reassessment</u> <u>model</u> allows prediction of safe doses in the MAD that have more potential for effect on the tumor micro-environment, encouraging enrollment
- Clinical pharmacology support and HV SAD allows for much lower cost and faster completion
- MTD/RP2D in solid tumor patients provides path to combination studies

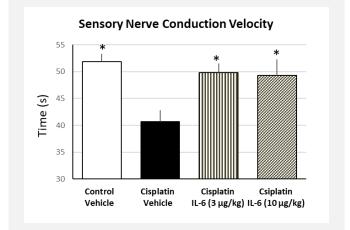
Shen, Clin Transl Sci (2019) 12:6 Karakunnel, (2018) J Transl Med 16:336

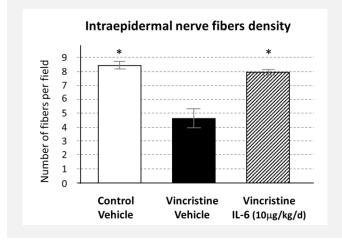
SON-1010: Proposed Development Pathway Core Safety and Efficacy Studies

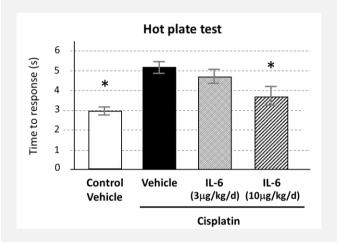
* Initiate Preclinical Combo Study in 2022


CHEMOTHERAPY-INDUCED PERIPHERAL NEUROPATHY AND DIABETIC PERIPHERAL NEUROPATHY

SON-080 (LOW-DOSE IL-6)

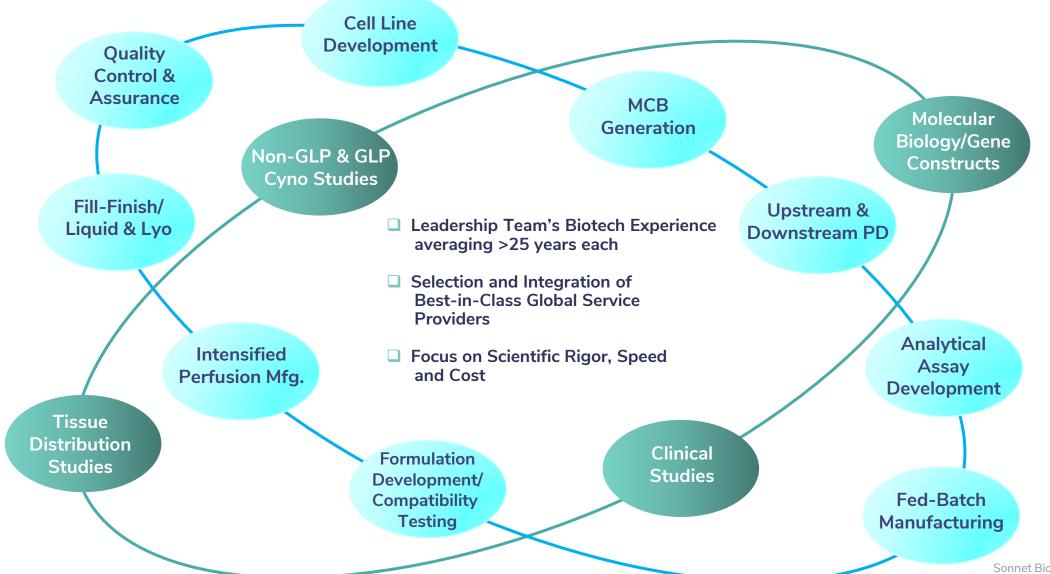





IL-6 Is Neurotrophic

Epidermal Innervation reinstates nerve fiber density

IL-6: Safe and Well Tolerated at the Target Dose



Phase I / II Clinical Data

CONDITION	Thrombocytopenia		Similar AEs and SAEs to controls, e.g. fever and rigor, headache, vomiting (at target dose			
PATIENT	n = 213; all types also including Grade III/IV cancer	SIDE EFFECT PROFILE	range) No exacerbation of pain or neuropathy were			
STUDIES	10 independent Phase I/II studies		observed after IL-6 administration			
CO-TREATMENT	Diverse antineoplastic therapies		MTD = 5μg/kg/day or 10μg/kg/TIW Doses below 2.5 μg/kg/day were well			
DOSES	0.25-32 μg/kg/day, or 5-20 μg/kg/TIW SC	SAFETY WINDOW	tolerated Sonnet target dose will be 0.2 – 0.8			
DURATION	Up to 10 weeks		μg/kg/TIW, 50 times below the estimated MTD			

Sonnet's Product Development Engine

Sonnet BioTherapeutics | 27

Leveraging Technology to Improve Process Productivity and Product Quality

State-of-the-Art manufacturing technology being deployed to manufacture pipeline cytokines

Intensified perfusion upstream, using integration of Sartorius bioreactor and Repligen ATF technology

Continuous downstream from capture step required to manage proteolytic degradation, using Repligen ATF technology

Corporate Summary

Immune Oncology

Validated targets combined with a proprietary Fully Human Albumin Binding (F_HAB) platform

Toxicity

Single dose non-human primate study with SON-1010 demonstrates tolerability at high doses

Demonstrated in vivo POC

- Enhanced pK
- Selectivity to tumor
- Superior efficacy of cytokines while attached to F_HAB as compared to their naked counterparts

Clinical study initiation targets over the next 12 months

SON-1010 (Phase 1 in NHV) SON-080 (Phase 1b/2a in CIPN) SON-080 (Phase 2a in DPN) SON-1210 (Phase 1 in Solid Tumors)

F_HAB Pipeline Expansion

Several novel interleukin-growth factor combinations

Intellectual Property

PCT and US Patents in prosecution, as well as six provisional patents filed (i.e., potential utility with Vaccines, ADCs, Checkpoint Inhibitors and CAR-Ts; Continuous Intensified Perfusion Manufacturing)

US Patent No. 11,028,166, "Albumin Domain Fusion Proteins", Issued June 2021

